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Received 27 November 1978, in final form 13 February 1979 

Abstract. The statistical analysis previously used for the temperature behaviour of clusters 
for the Ising model is applied to Monte Carlo samples of percolation clusters. Three cases 
are considered: ( a )  positive correlation (T = 2T, ferromagnetic); ( b )  random (T  = 00); ( c )  
negative correlation (T = 2Tc antiferromagnetic). It is found that the exponents which 
characterise the decay of the cluster-size distributions do not depend on correlation. These 
distributions can be fitted over their whole range by assuming that percolation critical 
exponents are independent of correlation, but the scaling functions which then result do 
depend on correlation. Statistical parameters which are related to the compactness or 
ramification of clusters change smoothly with correlation. However, some features of 
negative correlation are significantly different in behaviour. 

1. Introduction 

In a previous paper (Domb and Stoll 1977) we introduced a number of statistical 
parameters to characterise the shape and size of clusters in the two-dimensional Ising 
model. We then took advantage of Monte Carlo data obtained with a two-dimensional 
one-spin-flip Ising model (Glauber model) to estimate how these parameters varied 
with temperature, especially in the neighbourhood of the critical temperature T,. A 
parameter A to which we devoted particular attention was related to the cyclomatic 
number c of the cluster, and measured its degree of compactness or ramification. 

The same model can be used to provide data on percolation clusters, the concen- 
tration being controlled by the magnetic field. Random percolation corresponds to the 
limit of very high temperatures, and correlated percolation to finite temperatures. We 
have given some typical examples of the results obtained in previous publications 
(Domb 1978, Stoll et a1 1978, Stoll and Domb 1978). In the present paper we aim to 
furnish detailed numerical estimates for percolation to parallel those previously 
obtained for the Ising model. 

In addition to comparing the Ising and percolation transitions, we shall focus 
attention on the effect of correlation on percolation behaviour. A number of authors 
have discussed percolation with positive correlations, i.e. in ferromagnetic Ising systems 
(e.g. Coniglio et a1 1977, Odagaki et a1 1975), and the suggestion has been made by 
Coniglio et a1 that universal features like critical exponents remain unchanged in the 
presence of correlation. Support for this suggestion is contained in a recent paper by 
Klein et a1 (1978). To the best of our knowledge the only previous discussion on 

t Permanent address: Wheatstone Physics Laboratory, King’s College, Strand, London WC2R 2LS, UK 

0305-4470/79/101843 + 13$01.00 @ 1979 The Institute of Physics 1843 



1844 E Stoll and C Domb 

0 

percolation with negative correlations, i.e. in antiferromagnetic Ising systems, is by 
Kikuchi (1970). 

We shall present sets of percolation data corresponding to: ( a )  T = 2Tc (J  > 0,  
ferromagnetic); ( b )  T =CO (random); ( c )  T = 2Tc (J  <0, antiferromagnetic). We find 
that some characteristics are indeed universal and independent of correlation, but 
others do not fit the universality pattern. By comparing the three sets of data we will see 
qualitatively how correlation affects the shape and size of clusters in the critical region. 
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2. Critical concentration 

Qualitatively one would expect positive correlation to enhance the growth of large 
clusters and hence to decrease pc ,  whilst negative correlation should increase pc .  This is 
borne out by the numerical data. 

As a method of estimating p c  we found it convenient to use P ( p ) ,  the fraction of 
particles in the infinite cluster, which rises very steeply for p > p c .  The critical exponent 
/3 has been estimated as being close to f (Sykes et a1 1976). Hence, if we plot P( p)', the 
result should be close to a straight line. Even if the exponent /3 is slightly in error, the 
change in the estimate of p c  is small. The very recent estimate of /3 = 0*139* 0.003 by 
Blease et a1 (1978) differs only marginally from the above value. 
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Figure 1. Determination of p c  by P(p)': (a) ferromagnetic; ( b )  random; ( c )  antifer- 
romagnetic. (Same key for all other figures.) 

In figure 1 we show these plots in the three cases, and it will be seen that they can be 
reasonably fitted by straight lines. We have not been able to detect any significant 
difference in this critical exponent between the three cases, but the data are not very 
sensitive for fitting /3. Our estimates of p c  in the three cases are ( a )  0.569rt0.01; (b )  
0.598 f 0.01; ( c )  0.641 rt 0.01. The value for random percolation ( b )  is larger than the 
value of Sykes ef a1 (1976) by 0.005, the shift to a larger value being caused by a 
finite-size effect. We used a 110x 110 square lattice spin system with periodic 
boundary conditions. The proper way to treat this effect is by finite-size scaling (see e.g. 
Reynolds et af 1978). The size b of the lattice is varied, and the finite-size deviation 
from the true p c  (corresponding to an infinite lattice) is assumed to be of the form b-"" 
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We hope to undertake an investigation of this kind, but as a preliminary approximation 
we would expect that the values of ( a )  and ( c )  need to be decreased by a comparable 
amount. 

For the ferromagnetic case it is known that p c  becomes 0.5 at T = Tc, and remains at 
0.5 in the phase equilibrium region for T < T, (Coniglio et a1 1977). For the antifer- 
romagnetic case the behaviour at lower temperatures is much less clear, since one enters 
the region of critical field behaviour of an antiferromagnet. It is reasonable to expect 
that p c  will increase further as the temperature is lowered, but the limiting value as T + 0 
depends on the competition between the ferromagnetic and antiferromagnetic phases 
near the critical field H,. It must be related to the critical concentration (-0.77) at 
which an ordered antiferromagnetic phase first appears (Brooks and Domb 1951). We 
shall return to a discussion of the behaviour of p c  as a function of temperature at the end 
of 93.  

3. Cluster-size distribution 

For random percolation the asymptotic form of distribution of n-clusters has been 
established rigorously (Kunz and Souillard 1978a, Schwartz 1978) as follows: 

z ( n ,  P )  - A b )  exp(-b(p)n"'*), P >P1 > P c ,  (1) 

z ( n ,  P I  - Ch)  exp(--d(p)n), P < P 2 < P C 7  (2) 
where z ( n ,  p )  is the number of n-clusters at concentration p .  The arguments of Hankey 
(1978) indicate that (1) should be valid for any p > p,.  Monte Carlo data were found to 
fit well to formula (1) for all p > p c  (Stoll and Domb 1978); for p < p c  the asymptotic 
form (2) does not set in until n is much larger, but sufficiently extensive data were 
available to give evidence of the exponential decay (Muller-Krumbhaar and Stoll 
1976). 

Some of the rigorous arguments can be extended to correlated percolation (Kunz 
and Souillard 1978b). We have found numerical evidence for an equally good fit to 
formula (1). Here we have plotted the function 

ln-ln(z(n, p ) / z ( n ,  P , ) )  (3) 

against In n, and the results are shown in figure 2(a) ( p / p ,  = 1 ~ 1 7 , 1 ~ 1 1 , 1 ~ 0 7 , 1 ~ 0 4 )  and 
figure 2 ( c )  ( p / p c =  1.06, 1.04, 1-02). The results for random percolation are 
reproduced for comparison in figure 2(b) ( p / p c  = 1.09, 1.07, 1.05). 

The scaling hypothesis (see e.g. Stauffer 1978a) would require b ( p )  to be propor- 
tional to ( p - ~ , ) ~ ' ~ ~ ,  or taking the same value for U in all three cases (P=& to 
( p  - P , ) ~ / ~ .  The data can be well fitted by such a formula provided that we choose a 
value of pc lower than that of the previous section, i.e. ( a )  0.558, ( b )  0.589, (c) 0.637. 
The finite-size effect does not enter in the same way as in the previous section, and, if we 
take random percolation as a standard, the true value for an infinite system is close to 
the average of the two sets of values given previously, i.e. ( a )  0.563, ( b )  0.593, ( c )  

In relation to data for p < p c ,  we have found it more convenient to try to fit the 
0.639. 

conjectured form of complete distribution 

z ( n , p ) / z ( n , p , ) - e x p ( a ( p ) n " - d ( p ) n )  (4) 
rather than just the exponential decay. Taking the same value of U, the resultant fit to 
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Figure 2. Asymptotic decay of clusters for p > p E ,  with z (n, p )  representing the number of 
n-clusters at concentration p .  
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Figure 3. Distribution of n-clusters for p < p c ,  with r(n,  p ) / r ( n ,  p,)  = exp(a(p)n' -d(p)n) ,  
1 

(T = 18. 

the data is shown in figure 3 (the division by z (n ,pc )  helps to remove the odd-even 
oscillations for small n ) .  For random percolation a similar fit to the data has recently 
been given in the comprehensive study by Leath and Reich (1978). 

Scaling theory now suggests that a ( p )  should be proportional to p -pc and d ( p )  to 
( p  -pC)l". If we fit pc from this formula, we obtain different and somewhat larger 
values than those in the previous section, but they are less well defined since thedata are 
more sparse; we do not think that too much significance should be attached to these 
deviations. To avoid suggesting excessive accuracy we have taken the following values 
of pc for the calculations involved in the rest of this paper: ( a )  0.56, (b) 0.59, ( c )  0.64. 
We think that these should be within 1% of the true critical concentrations. 

Our value ( a )  differs significantly from that of 0.544 obtained by Odagaki er a1 
(1975). These authors give no estimate of their expected error and do not take account 
of the finite-size effect. We think that the method they use to estimate critical 
concentration is insensitive, and that the values they quote for large T represent too 
rapid a change near 1/T = 0. The pattern of behaviour indicated by Kikuchi (1970) in 
his approximate treatment of the problem, 

pc = (4 - l)/(q - 1)2 -4(q - 1)'[1 -exp(4J/kT)] ( 5 )  

for a lattice of coordination number 4 seems to provide a reasonable qualitative picture 
of the dependence of pc on T, but the method he used is too crude to give numerical 
results of sufficient accuracy to compare with our own. 

Attention should be drawn to a number of features of the cluster-size distribution 
curves in figure 3. They all have the same characteristic shape (described by Stauffer 
1978a), rising to a maximum and then decaying exponentially. However, the actual 
value of the maximum differs in the three cases-(a) 4.0, (b) 5.4, (c) 9.1- and these 
differences seem well beyond any expected margin of error. This means that the curves 
cannot be scaled, and that it is not possible to find a universal scaling function which will 
fit all three sets of data. 

Our estimate of 5.4 for the maximum in the case of random percolation differs 
somewhat from the value of 4.8 given recently by Stauffer (1978~). We have found it 
better to use data removed from pc to estimate this maximum, since near pc the 
maximum occurs in the large-cluster region where statistical data are not too good. 
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4. Cyclomatic number and compactness of clusters 

The cyclomatic number c of clusters is defined by 

c(n,  l ) = l - n + l ,  

where n is the number of points and 1 the number of lines in the cluster. c (n ,  I) 
represents the number of independent cycles and provides a measure of its compact- 
ness. For trees c = 0, and small values of c correspond to ramified clusters. 

In figure 4 we have plotted E(n),  the statistical average over different I for a given n, 
as a function of n for various values of p / p c .  For the ferromagnetic and random cases 
(figures 4(a )  and (b ) )  the behaviour is similar to that of the ferromagnetic Ising model as 
a function of temperature. The curves do not manifest much curvature and rapidly 
approach their asymptotic linear value. The limiting slope for large n is a measure of 
the coefficient of compactness 

A = lim (dC/dn). ( 6 )  
n-m 

However, there is a marked difference of behaviour in the antiferromagnetic case 
(figure 4(c)). The curves start with a relatively small slope, and a quite rapid change in 
slope occurs when a particular size no is reached. The value of no depends on the value 
of p .  For small p it is quite small, but as p approaches p c  it becomes larger and larger 
until it disappears. This ‘size effect’ seems to be related to the ease with which the 
cyclomatic number can be increased by overturning spins in groups which have 
antiferromagnetic ordering. 

The coefficient of compactness, A, is plotted in figure 5 .  Again the pattern of 
behaviour is similar in the ferromagnetic and random cases (figures 5 ( a )  and (b) ) ,  
although the numerical values are significantly larger in the former case. As one might 
reasonably expect, the effect of the correlation is to produce more compact clusters. 

But the behaviour in the antiferromagnetic case is again significantly different 
(figure 5(c)). The coefficient of compactness decreases up to the neighbourhood of p c ,  
and starts to increase only when an infinite cluster has formed. The ramification of the 
infinite cluster itself for a given p / p c  increases significantly as one goes from ( a )  to (c). 

5. Average number of spins per cluster 

In order to estimate how the average number of spins per cluster changes with 
increasing p ,  it is convenient first to calculate (C)site, the average number of clusters per 
site, defined by 

The behaviour shown in figure 6 follows a similar pattern of steady decrease in all three 
cases. As one would expect, there is a larger number of small clusters in the antifer- 
romagnetic case, whereas the ferromagnetic interaction induces the smaller clusters to 
coagulate. 

If the number of spins per cluster is defined by 

average number of spins 
average number of clusters (8) 

Znz ( n )  
Zz ( n )  ’ 

-- (n )cluster = - 
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Figure 4. Average cyclomatic number against n for various p/p0 with c(n,  1 )  representing 
the cyclomatic number of an n-cluster with I links, and E(n) the average over different 1. 
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Figure 6. Average number of clusters per site, (C),,,,, against p / p c .  
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PIPc 

Figure 7. Average number of spins per cluster, (n)clutcr, against p/pc. The open circles, 
squares and triangles correspond to all clusters, including the spanning cluster. 

the behaviour of (n)durter as a function of p / p c  is shown in figure 7. The general pattern 
is the same in all three cases and is similar to that of ferromagnetic Ising clusters as a 
function of T/Tc, but there is a steady decrease in numbers from ( a )  to ( c )  for a given 
p /pc .  At critical concentration the average numbers of spins per cluster are 33,21 and 
15 respectively. 

using 
the definition 

Finally, we estimate the value of the average number of cycles per site, 

This quantity can be calculated exactly for the ferromagnetic Ising model at T, 
(Temperley and Lieb 1971), and the Monte Carlo data fitted in well with the exact 
calculation. Unfortunately the corresponding calculation for random percolation 
applies to the bond rather than the site problem, and no direct comparison is therefore 
possible. The general pattern of behaviour is again similar to that of the ferromagnetic 
king model and is shown in figure 8. 

6. Properties of the infinite cluster 

For the infinite cluster ( p  >pc )  Hankey (1978) has recently established a number of 
important results. It is possible to define a ‘bulk entropy’ per particle which is 
independent of lattice structure and is given by 

(10) 

This is just the entropy per particle of a random mixture of particles and holes. Defining 
the total number of holes adjacent to particles of the cluster as s, and writing 

S(P) = 1-P In P - (1 -PI ln(1 -p ) I /p .  

sln = a ,  (11) 

we have for the infinite cluster 
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F@re 8. Average number of cycles per site, (E).ito against p / p c .  The open circles 
correspond to all clusters, including the spanning cluster. 

In terms of a the entropy in (10) can be written as 

(1 + a )  ln(1 + a )  - a  In a. (13) 
Relation (12) was conjectured empirically from Monte Carlo data independently of 

Hankey’s derivation (Stoll and Domb 1978). It is of interest to see what happens to s / n  
when correlations are taken into account, and values of s / n  for the three cases 
considered are plotted in figure 9. The case of positive correlation is shown in figure 
9(a), and it will be seen that the points all fall below the curve given by equation (12). 
Dr A Coniglio has informed us that he has established this result rigorously for all 
positive correlations. 
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The case of random percolation is shown in figure 9(b). For p < p c  there are only 
finite clusters and the points fall below the curve, as was shown by Hankey (and A 
Coniglio, private communication). 

When the correlations are negative (figure 9(c)) ,  however, the curve of s / n  crosses 
the curve (12) at some value po<pc ,  and for the infinite cluster s / n  remains above the 
curve. 

It is challenging to enquire whether any generalisations of formulae (10)-(13) are 
possible for the infinite cluster in correlated percolation. Clearly the entropy in (10) can 
be replaced by the corresponding entropy of the Ising model, ferromagnetic or 
antiferromagnetic. Formula (13), which relates to the number of lattice animals of 
given a, is a geometrical formula independent of correlation. Since (12) can be derived 
from (10) and (13) for random percolation, we think that it may be possible to calculate 
the appropriate generalisation for correlated percolation. We are currently undertak- 
ing detailed calculations. 
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7. Nature of percolation dusters 

In a recent letter by Stauffer (1978b) evidence is provided for the existence of a density 
profile for a percolation cluster with p >pc ,  whereas there is no such profile for p < pc.  
These resuIts are in accord with the discussion by Hankey (1978) to which we have 
ref erred. 

Stauffer goes on to characterise clusters as droplet-like for p > p c  and hydra-like 
when p <pc .  It is important to differentiate between our results, which are concerned 
with the local structure of percolation clusters, and Stauffer’s, which deal with the 
long-range structure. We wish to draw attention to the fact that there is no dramatic 
change in compactness of clusters as p passes through pc (as evidenced by the behaviour 
of A in figure 5 ) .  To illustrate this further we have reproduced in figure 10 typical 
clusters arising from random percolation for p / p c  = 0.93 and p / p c  = 1-13, and there is 
little apparent difference in their structure. 

Figure 10. Typical clusters for random percolation. 

Our results also show that it is possible for a percolation cluster with a particular 
local structure to belong to the p < p c  region for random percolation and the p > p c  
region for percolation with negative correlations. Hence the local structure has little 
relevance in relation to the formation of an infinite cluster. 

Acknowledgment 

We are grateful to D Stauffer for critical comments on the original manuscript. 

References 

Blew J, Egsam J W and Peace C M 1978 J. Phys. C: Solid SI. Phys. 11 4009-16 
Brooks J E and Domb C 1951 Proc. R. Soc. 207 343-58 
Gmiglio A, Nappi C R, Peruggi F and Ruse L 1977 J.  Phys. A: Math. Gen. 10 205-18 
Domb C and Stoll E 1977 J.  Phys. A: Math. Gen. 10 1141-9 



Shape and size of two-dimensional percolation clusters 1855 

Domb C 1978 Roc. 13th ZUPAPConf. on StatisticalPhysics, Ann. Zsr. Phys. Soc. vol2 (Bristol: Adam Hilger) 

Hankey A 1978 J. Phys. A :  Math. Gen. 11 L49-55 
Kikuchi R 1970 J. Chem. Phys. 53 2713-8 
Klein W, Stanley H E, Reynolds P J and Coniglio A 1978 Phys. Rev. Lert. 41 1145-8 
Kunz H and Souillard B 1978a Phys. Rev. Lerr. 40 133-5 
- 1978b J. Srat. Phys. 19 77-106 
b a t h  P L and Reich G R J 1978 J. Phys. C: Solid St. Phys. 11 4017-36 
Muller-Krumbhaar H and Stoll E 1976 J. Chem. Phys. 65 4294-302 
Odagaki T, Ogita N and Matsuda H 1975 J.  Phys. Soc. Japan 39 618-24 
Reynolds P J, Stanley H E and Klein W 1978 J.  Phys. A: Marh. Gen. 11 L199-207 
Schwartz M 1978 Phys. Rev. B 18 2364-6 
Stauffer D 1978a J. Stat. Phys. 18 125-36 
- 1978b Phys. Rev. Len. 41 1333-6 
- 1978c Preprint 
Stall E and Domb C 1978 J.  Phys. A:  Marh. Gen. 11 L57-61 
Stoll E, Domb C and Schneider T 1978 Roc. 13th ZUPAPConf. on Statistical Physics, Ann. Zsr. Phys. Soc. vol 

Sykes M F, Gaunt D S and Glen M 1976 J. Phys. A :  Marh. Gen. 725-30 
Temperley H N V and Lieb E H 1971 Roc. R. Soc. A 322 251-80 

pp 61-74 

2 (Bristol: Adam Hilger) pp 303-7 


